On a reverse Mulholland’s inequality in the whole plane

نویسندگان

  • Aizhen Wang
  • Bicheng Yang
چکیده

By introducing multi-parameters, applying the weight coefficients and Hermite-Hadamard's inequality, we give a reverse of the extended Mulholland inequality in the whole plane with the best possible constant factor. The equivalent forms and a few particular cases are also considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Relation to Hardy-hilbert’s Integral Inequality and Mulholland’s Inequality

This paper deals with a relation between Hardy-Hilbert’s integral inequality and Mulholland’s integral inequality with a best constant factor, by using the Beta function and introducing a parameter λ. As applications, the reverse, the equivalent form and some particular results are considered.

متن کامل

On a Half-Discrete Hilbert-type Inequality Similar to Mulholland’s Inequality

*Correspondence: [email protected]; [email protected] 2Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China Full list of author information is available at the end of the article Abstract By using the way of weight functions and Hadamard’s inequality, a half-discrete Hilbert-type inequality similar to Mulholland’s inequality with a best constant...

متن کامل

On a New Reverse Hilbert\'s Type Inequality

In this paper, by using the Euler-Maclaurin expansion for the Riemann-$zeta$ function, we establish an inequality of a weight coefficient. Using this inequality, we derive a new reverse Hilbert's type inequality. As an applications, an equivalent form is obtained.

متن کامل

General Hardy-Type Inequalities with Non-conjugate Exponents

We derive whole series of new integral inequalities of the Hardy-type, with non-conjugate exponents. First, we prove and discuss two equivalent general inequa-li-ties of such type, as well as their corresponding reverse inequalities. General results are then applied to special Hardy-type kernel and power weights. Also, some estimates of weight functions and constant factors are obtained. ...

متن کامل

Subadditive functions and partial converses of Minkowski ’ s and Mulholland ’ s inequalities

Let φ be an arbitrary bijection of R+. We prove that if the two-place function φ−1[φ(s) + φ(t)] is subadditive in R+ then φ must be a convex homeomorphism of R+. This is a partial converse of Mulholland’s inequality. Some new properties of subadditive bijections of R+ are also given. We apply the above results to obtain several converses of Minkowski’s inequality. Introduction. Throughout this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018